wine_data: A 3-class wine dataset for classification
A function that loads the Wine dataset into NumPy arrays.
from mlxtend.data import wine_data
Overview
The Wine dataset for classification.
| Samples | 178 | 
| Features | 13 | 
| Classes | 3 | 
| Data Set Characteristics: | Multivariate | 
| Attribute Characteristics: | Integer, Real | 
| Associated Tasks: | Classification | 
| Missing Values | None | 
| column | attribute | 
|---|---|
| 1) | Class Label | 
| 2) | Alcohol | 
| 3) | Malic acid | 
| 4) | Ash | 
| 5) | Alcalinity of ash | 
| 6) | Magnesium | 
| 7) | Total phenols | 
| 8) | Flavanoids | 
| 9) | Nonflavanoid phenols | 
| 10) | Proanthocyanins | 
| 11) | Color intensity | 
| 12) | Hue | 
| 13) | OD280/OD315 of diluted wines | 
| 14) | Proline | 
| class | samples | 
|---|---|
| 0 | 59 | 
| 1 | 71 | 
| 2 | 48 | 
References
- Forina, M. et al, PARVUS - An Extendible Package for Data Exploration, Classification and Correlation. Institute of Pharmaceutical and Food Analysis and Technologies, Via Brigata Salerno, 16147 Genoa, Italy.
 - Source: https://archive.ics.uci.edu/ml/datasets/Wine
 - Bache, K. & Lichman, M. (2013). UCI Machine Learning Repository. Irvine, CA: University of California, School of Information and Computer Science.
 
Example 1 - Dataset overview
from mlxtend.data import wine_data
X, y = wine_data()
print('Dimensions: %s x %s' % (X.shape[0], X.shape[1]))
print('\nHeader: %s' % ['alcohol', 'malic acid', 'ash', 'ash alcalinity',
                        'magnesium', 'total phenols', 'flavanoids',
                        'nonflavanoid phenols', 'proanthocyanins',
                        'color intensity', 'hue', 'OD280/OD315 of diluted wines',
                        'proline'])
print('1st row', X[0])
Dimensions: 178 x 13
Header: ['alcohol', 'malic acid', 'ash', 'ash alcalinity', 'magnesium', 'total phenols', 'flavanoids', 'nonflavanoid phenols', 'proanthocyanins', 'color intensity', 'hue', 'OD280/OD315 of diluted wines', 'proline']
1st row [  1.42300000e+01   1.71000000e+00   2.43000000e+00   1.56000000e+01
   1.27000000e+02   2.80000000e+00   3.06000000e+00   2.80000000e-01
   2.29000000e+00   5.64000000e+00   1.04000000e+00   3.92000000e+00
   1.06500000e+03]
import numpy as np
print('Classes: %s' % np.unique(y))
print('Class distribution: %s' % np.bincount(y))
Classes: [0 1 2]
Class distribution: [59 71 48]
API
wine_data()
Wine dataset.
- 
Source: https://archive.ics.uci.edu/ml/datasets/Wine - 
Number of samples: 178 - 
Class labels: {0, 1, 2}, distribution: [59, 71, 48]Dataset Attributes:
- 1) Alcohol
 - 2) Malic acid
 - 3) Ash
 - 4) Alcalinity of ash
 - 5) Magnesium
 - 6) Total phenols
 - 7) Flavanoids
 - 8) Nonflavanoid phenols
 - 9) Proanthocyanins
 - 10) Color intensity
 - 11) Hue
 - 12) OD280/OD315 of diluted wines
 - 13) Proline
 
 
Returns
- 
X, y: [n_samples, n_features], [n_class_labels]X is the feature matrix with 178 wine samples as rows and 13 feature columns. y is a 1-dimensional array of the 3 class labels 0, 1, 2
 
Examples
For usage examples, please see https://rasbt.github.io/mlxtend/user_guide/data/wine_data