RandomHoldoutSplit: split a dataset into a train and validation subset for validation
Randomly split a dataset into a train and validation subset for validation.
from mlxtend.evaluate import RandomHoldoutSplit
Overview
The RandomHoldoutSplit
class serves as an alternative to scikit-learn's KFold
class, where the RandomHoldoutSplit
class splits a dataset into training and a validation subsets without rotation. The RandomHoldoutSplit
can be used as argument for cv
parameters in scikit-learn's GridSearchCV
etc.
The term "random" in RandomHoldoutSplit
comes from the fact that the split is specified by the random_seed
rather than specifying the training and validation set indices manually as in the PredefinedHoldoutSplit
class in mlxtend.
Example 1 -- Iterating Over a RandomHoldoutSplit
from mlxtend.evaluate import RandomHoldoutSplit
from mlxtend.data import iris_data
X, y = iris_data()
h_iter = RandomHoldoutSplit(valid_size=0.3, random_seed=123)
cnt = 0
for train_ind, valid_ind in h_iter.split(X, y):
cnt += 1
print(cnt)
1
print(train_ind[:5])
print(valid_ind[:5])
[ 60 16 88 130 6]
[ 72 125 80 86 117]
Example 2 -- RandomHoldoutSplit in GridSearch
from sklearn.model_selection import GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
from mlxtend.evaluate import RandomHoldoutSplit
from mlxtend.data import iris_data
X, y = iris_data()
params = {'n_neighbors': [1, 2, 3, 4, 5]}
grid = GridSearchCV(KNeighborsClassifier(),
param_grid=params,
cv=RandomHoldoutSplit(valid_size=0.3, random_seed=123))
grid.fit(X, y)
GridSearchCV(cv=<mlxtend.evaluate.holdout.RandomHoldoutSplit object at 0x7fae707f6610>,
estimator=KNeighborsClassifier(),
param_grid={'n_neighbors': [1, 2, 3, 4, 5]})
API
RandomHoldoutSplit(valid_size=0.5, random_seed=None, stratify=False)
Train/Validation set splitter for sklearn's GridSearchCV etc.
Provides train/validation set indices to split a dataset
into train/validation sets using random indices.
Parameters
-
valid_size
: float (default: 0.5)Proportion of examples that being assigned as validation examples. 1-
valid_size
will then automatically be assigned as training set examples. -
random_seed
: int (default: None)The random seed for splitting the data into training and validation set partitions.
-
stratify
: bool (default: False)True or False, whether to perform a stratified split or not
Examples
For usage examples, please see https://rasbt.github.io/mlxtend/user_guide/evaluate/RandomHoldoutSplit/
Methods
get_n_splits(X=None, y=None, groups=None)
Returns the number of splitting iterations in the cross-validator
Parameters
-
X
: objectAlways ignored, exists for compatibility.
-
y
: objectAlways ignored, exists for compatibility.
-
groups
: objectAlways ignored, exists for compatibility.
Returns
-
n_splits
: 1Returns the number of splitting iterations in the cross-validator. Always returns 1.
split(X, y, groups=None)
Generate indices to split data into training and test set.
Parameters
-
X
: array-like, shape (num_examples, num_features)Training data, where num_examples is the number of training examples and num_features is the number of features.
-
y
: array-like, shape (num_examples,)The target variable for supervised learning problems. Stratification is done based on the y labels.
-
groups
: objectAlways ignored, exists for compatibility.
Yields
-
train_index
: ndarrayThe training set indices for that split.
-
valid_index
: ndarrayThe validation set indices for that split.