TransactionEncoder
TransactionEncoder()
Encoder class for transaction data in Python lists
Parameters
None
Attributes
columns_: list
List of unique names in the X
input list of lists
Examples
For usage examples, please see https://rasbt.github.io/mlxtend/user_guide/preprocessing/TransactionEncoder/
Methods
fit(X)
Learn unique column names from transaction DataFrame
Parameters
-
X
: list of listsA python list of lists, where the outer list stores the n transactions and the inner list stores the items in each transaction.
For example, [['Apple', 'Beer', 'Rice', 'Chicken'], ['Apple', 'Beer', 'Rice'], ['Apple', 'Beer'], ['Apple', 'Bananas'], ['Milk', 'Beer', 'Rice', 'Chicken'], ['Milk', 'Beer', 'Rice'], ['Milk', 'Beer'], ['Apple', 'Bananas']]
fit_transform(X, sparse=False)
Fit a TransactionEncoder encoder and transform a dataset.
get_feature_names_out()
Used to get the column names of pandas output.
This method combined with the `TransformerMixin` exposes the
set_output API to the `TransactionEncoder`. This allows the user
to set the transformed output to a `pandas.DataFrame` by default.
See https://scikit-learn.org/stable/developers/develop.html#developer-api-set-output
for more details.
get_params(deep=True)
Get parameters for this estimator.
Parameters
-
deep
: bool, default=TrueIf True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns
-
params
: dictParameter names mapped to their values.
inverse_transform(array)
Transforms an encoded NumPy array back into transactions.
Parameters
-
array
: NumPy array [n_transactions, n_unique_items]The NumPy one-hot encoded boolean array of the input transactions, where the columns represent the unique items found in the input array in alphabetic order
For example,
array([[True , False, True , True , False, True ], [True , False, True , False, False, True ], [True , False, True , False, False, False], [True , True , False, False, False, False], [False, False, True , True , True , True ], [False, False, True , False, True , True ], [False, False, True , False, True , False], [True , True , False, False, False, False]])
The corresponding column labels are available as self.columns_, e.g., ['Apple', 'Bananas', 'Beer', 'Chicken', 'Milk', 'Rice']
Returns
-
X
: list of listsA python list of lists, where the outer list stores the n transactions and the inner list stores the items in each transaction.
For example,
[['Apple', 'Beer', 'Rice', 'Chicken'], ['Apple', 'Beer', 'Rice'], ['Apple', 'Beer'], ['Apple', 'Bananas'], ['Milk', 'Beer', 'Rice', 'Chicken'], ['Milk', 'Beer', 'Rice'], ['Milk', 'Beer'], ['Apple', 'Bananas']]
set_output(, transform=None)*
Set output container.
See :ref:`sphx_glr_auto_examples_miscellaneous_plot_set_output.py`
for an example on how to use the API.
Parameters
-
transform
: {"default", "pandas"}, default=NoneConfigure output of
transform
andfit_transform
."default"
: Default output format of a transformer"pandas"
: DataFrame outputNone
: Transform configuration is unchanged
Returns
-
self
: estimator instanceEstimator instance.
set_params(params)
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects
(such as :class:`~sklearn.pipeline.Pipeline`). The latter have
parameters of the form ``<component>__<parameter>`` so that it's
possible to update each component of a nested object.
Parameters
-
**params
: dictEstimator parameters.
Returns
-
self
: estimator instanceEstimator instance.
transform(X, sparse=False)
Transform transactions into a one-hot encoded NumPy array.
Parameters
-
X
: list of listsA python list of lists, where the outer list stores the n transactions and the inner list stores the items in each transaction.
For example, [['Apple', 'Beer', 'Rice', 'Chicken'], ['Apple', 'Beer', 'Rice'], ['Apple', 'Beer'], ['Apple', 'Bananas'], ['Milk', 'Beer', 'Rice', 'Chicken'], ['Milk', 'Beer', 'Rice'], ['Milk', 'Beer'], ['Apple', 'Bananas']]
sparse: bool (default=False) If True, transform will return Compressed Sparse Row matrix instead of the regular one.
Returns
-
array
: NumPy array [n_transactions, n_unique_items]if sparse=False (default). Compressed Sparse Row matrix otherwise The one-hot encoded boolean array of the input transactions, where the columns represent the unique items found in the input array in alphabetic order. Exact representation depends on the sparse argument
For example, array([[True , False, True , True , False, True ], [True , False, True , False, False, True ], [True , False, True , False, False, False], [True , True , False, False, False, False], [False, False, True , True , True , True ], [False, False, True , False, True , True ], [False, False, True , False, True , False], [True , True , False, False, False, False]]) The corresponding column labels are available as self.columns_, e.g., ['Apple', 'Bananas', 'Beer', 'Chicken', 'Milk', 'Rice']