Perceptron
Perceptron(eta=0.1, epochs=50, random_seed=None, print_progress=0)
Perceptron classifier.
Note that this implementation of the Perceptron expects binary class labels
in {0, 1}.
Parameters
-
eta
: float (default: 0.1)Learning rate (between 0.0 and 1.0)
-
epochs
: int (default: 50)Number of passes over the training dataset. Prior to each epoch, the dataset is shuffled to prevent cycles.
-
random_seed
: intRandom state for initializing random weights and shuffling.
-
print_progress
: int (default: 0)Prints progress in fitting to stderr. 0: No output 1: Epochs elapsed and cost 2: 1 plus time elapsed 3: 2 plus estimated time until completion
Attributes
-
w_
: 2d-array, shape={n_features, 1}Model weights after fitting.
-
b_
: 1d-array, shape={1,}Bias unit after fitting.
-
cost_
: listNumber of misclassifications in every epoch.
Examples
For usage examples, please see https://rasbt.github.io/mlxtend/user_guide/classifier/Perceptron/
Methods
fit(X, y, init_params=True)
Learn model from training data.
Parameters
-
X
: {array-like, sparse matrix}, shape = [n_samples, n_features]Training vectors, where n_samples is the number of samples and n_features is the number of features.
-
y
: array-like, shape = [n_samples]Target values.
-
init_params
: bool (default: True)Re-initializes model parameters prior to fitting. Set False to continue training with weights from a previous model fitting.
Returns
self
: object
get_params(deep=True)
Get parameters for this estimator.
Parameters
-
deep
: boolean, optionalIf True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns
-
params
: mapping of string to anyParameter names mapped to their values.'
adapted from https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/base.py Author: Gael Varoquaux gael.varoquaux@normalesup.org License: BSD 3 clause
predict(X)
Predict targets from X.
Parameters
-
X
: {array-like, sparse matrix}, shape = [n_samples, n_features]Training vectors, where n_samples is the number of samples and n_features is the number of features.
Returns
-
target_values
: array-like, shape = [n_samples]Predicted target values.
score(X, y)
Compute the prediction accuracy
Parameters
-
X
: {array-like, sparse matrix}, shape = [n_samples, n_features]Training vectors, where n_samples is the number of samples and n_features is the number of features.
-
y
: array-like, shape = [n_samples]Target values (true class labels).
Returns
-
acc
: floatThe prediction accuracy as a float between 0.0 and 1.0 (perfect score).
set_params(params)
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects
(such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it's possible to update each
component of a nested object.
Returns
self
adapted from
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/base.py
Author: Gael Varoquaux <gael.varoquaux@normalesup.org>
License: BSD 3 clause