EyepadAlign: align face images based on eye location
A class to align face images based on eye location.
from mlxtend.image import EyepadAlign
Overview
The EyepadAlign
class align face images to target face landmarks based on the location of the eyes. The facial landmarks are detected using mlxted.image.extract_face_landmarks
, which is based on dlib's face landmark detection code [1].
EyepadAlign
implements 3 fit methods, fit_image
, fit_values
, and fit_directory
; once the EyepadAlign
object has been fitted via one of these methods (as illustrated in the examples), it can be used to transform a target image.
References
- [1] Kazemi, Vahid, and Josephine Sullivan. "One millisecond face alignment with an ensemble of regression trees." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014.
Example 1 (fit_image)
This example illustrates the use of EyepadAlign fit to a single target input image (first image in the CelebA dataset) to another portrait such that the eye position is in the same scale and location as the target image.
import imageio
from mlxtend.image import EyepadAlign
### Fit EyepadAlign on a single target image
eyepad = EyepadAlign()
target_image = imageio.imread('celeba-subset/000001.jpg')
print('Target image shape: ', target_image.shape)
eyepad.fit_image(target_image);
Target image shape: (218, 178, 3)
### Transform a test image
img = imageio.imread('test-face.png')
print('Original Image shape: ', img.shape)
img_tr = eyepad.transform(img)
print('Transformed Image shape: ', img_tr.shape)
Original Image shape: (350, 350, 3)
Transformed Image shape: (218, 178, 3)
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(12, 5))
ax = fig.add_subplot(1, 3, 1)
ax.imshow(target_image)
ax.set_title('Target', size=20)
ax = fig.add_subplot(1, 3, 2)
ax.imshow(img)
ax.set_title('Original', size=20)
ax = fig.add_subplot(1, 3, 3)
ax.imshow(img_tr)
ax.set_title('Aligned to Target', size=20)
plt.show()
Example 2 (fit_directory)
In typical computer vision and deep learning tasks, we are interested in aligning all images in a dataset and across dataset to allow cross-dataset comparisons of face image classifiers.
Using the fit_directory
method, we can fit EyepadAlign
such that the average landmarks are computed from all images in a directory. Then, we can use these average landmarks to transform new images based on the average eye location.
import imageio
from mlxtend.image import EyepadAlign
### Setting verbosity to 1 will print a progress bar
eyepad = EyepadAlign(verbose=1)
eyepad.fit_directory(target_img_dir='celeba-subset/',
target_width=178, target_height=218,
file_extension='.jpg')
img = imageio.imread('test-face.png')
img_tr = eyepad.transform(img)
print('Transformed Image shape: ', img_tr.shape)
Pre-Checking directory for consistent image dimensions...
0% [#########] 100% | ETA: 00:00:00
Fitting the average facial landmarks for 9 face images
Total time elapsed: 00:00:00
0% [##### ] 100% | ETA: 00:00:00/Users/sebastian/code/mlxtend/mlxtend/image/extract_face_landmarks.py:66: UserWarning: No face detected.
warnings.warn('No face detected.')
/Users/sebastian/code/mlxtend/mlxtend/image/eyepad_align.py:188: UserWarning: No face detected in image 000004.jpg. Image ignored.
% f)
0% [#########] 100% | ETA: 00:00:00
Total time elapsed: 00:00:00
/Users/sebastian/code/mlxtend/mlxtend/image/eyepad_align.py:188: UserWarning: No face detected in image 000003.jpg. Image ignored.
% f)
Transformed Image shape: (218, 178, 3)
Note that a warning is displayed if no face landmarks could be detected. In these cases, the image is skipped and not included in the average landmark computation. E.g., 000003.jpg would be such an example:
import matplotlib.pyplot as plt
img_no_landmarks = imageio.imread('celeba-subset/000003.jpg')
plt.imshow(img_no_landmarks)
plt.show()
Finally, the an example of aligning the original face image to the average landmarks in the dataset is shown below:
fig = plt.figure(figsize=(10, 4))
ax = fig.add_subplot(1, 3, 1)
ax.scatter(eyepad.target_landmarks_[:, 0], eyepad.target_landmarks_[:, 1], alpha=0.8)
ax.set_title('Target Landmarks', size=20)
ax.set_xlim(0, 178)
ax.set_ylim(218, 0)
ax = fig.add_subplot(1, 3, 2)
ax.imshow(img)
ax.set_title('Original', size=20)
ax = fig.add_subplot(1, 3, 3)
ax.imshow(img_tr)
ax.set_title('Aligned to Target', size=20)
plt.tight_layout()
plt.show()
Example 3 (fit_values)
For more customization, landmarks can also be passed manually.
import imageio
from mlxtend.image import EyepadAlign
import numpy as np
celeba_landmarks = np.array([[45, 113], [45, 124], [46, 136],
[49, 147], [53, 158], [60, 167],
[68, 175], [77, 182], [88, 184],
[99, 182], [108, 175], [117, 167],
[124, 158], [128, 147], [131, 136],
[132, 124], [132, 113], [53, 104],
[58, 99], [66, 98], [73, 99],
[80, 102], [95, 102], [103, 99],
[110, 98], [118, 99], [123, 104],
[88, 111], [88, 119], [88, 126],
[88, 134], [79, 139], [83, 140],
[88, 142], [92, 140], [96, 139],
[62, 112], [66, 109], [72, 109],
[77, 113], [71, 114], [66, 114],
[99, 113], [104, 109], [110, 109],
[115, 112], [110, 114], [105, 114],
[71, 152], [77, 150], [83, 149],
[88, 150], [92, 149], [99, 150],
[105, 152], [99, 159], [93, 162],
[88, 163], [83, 162], [77, 159],
[73, 153], [83, 152], [88, 153],
[93, 152], [103, 153], [93, 156],
[88, 157], [83, 156]])
eyepad = EyepadAlign(verbose=1)
eyepad.fit_values(target_landmarks=celeba_landmarks,
target_width=178, target_height=218);
import matplotlib.pyplot as plt
img = imageio.imread('test-face.png')
img_tr = eyepad.transform(img)
print('Transformed Image shape: ', img_tr.shape)
fig = plt.figure(figsize=(10, 4))
ax = fig.add_subplot(1, 3, 1)
ax.scatter(eyepad.target_landmarks_[:, 0], eyepad.target_landmarks_[:, 1], alpha=0.8)
ax.set_title('Target Landmarks', size=20)
ax.set_xlim(0, 178)
ax.set_ylim(218, 0)
ax = fig.add_subplot(1, 3, 2)
ax.imshow(img)
ax.set_title('Original', size=20)
ax = fig.add_subplot(1, 3, 3)
ax.imshow(img_tr)
ax.set_title('Aligned to Target', size=20)
plt.tight_layout()
plt.show()
Transformed Image shape: (218, 178, 3)
Example 4 (centering the nose)
In many applications that involve center-cropping, it is helpful to translate the image such that the tip of the nose is located in the center of the image.
### Fit EyepadAlign to dataset to compute average landmarks
import imageio
from mlxtend.image import EyepadAlign
import numpy as np
eyepad = EyepadAlign(verbose=1)
eyepad.fit_directory(target_img_dir='celeba-subset/',
target_width=178, target_height=218,
file_extension='.jpg')
Pre-Checking directory for consistent image dimensions...
0% [#########] 100% | ETA: 00:00:00
Fitting the average facial landmarks for 9 face images
Total time elapsed: 00:00:00
0% [#########] 100% | ETA: 00:00:00
Total time elapsed: 00:00:00
<mlxtend.image.eyepad_align.EyepadAlign at 0x7fa09865d390>
### Use the calculated landmarks to center the nose:
center = np.array([178//2, 218//2])
displacement_vector = center - eyepad.target_landmarks_[33] # index 33 is the nose-tip
nose_centered_landmarks = eyepad.target_landmarks_ + displacement_vector
eyepad_cent_nose = EyepadAlign(verbose=1)
eyepad_cent_nose.fit_values(target_landmarks=nose_centered_landmarks,
target_width=178, target_height=218);
### Evaluate the results
img = imageio.imread('test-face.png')
img_tr = eyepad.transform(img)
img_nose_centered = eyepad_cent_nose.transform(img)
fig = plt.figure(figsize=(10, 4))
ax = fig.add_subplot(1, 3, 1)
ax.imshow(img)
ax.set_title('Original', size=20)
ax = fig.add_subplot(1, 3, 2)
ax.imshow(img_tr)
ax.set_title('Aligned (Average eye \n position in dataset)', size=15)
ax = fig.add_subplot(1, 3, 3)
ax.imshow(img_nose_centered)
ax.set_title('Aligned (Nose in image center)', size=15)
plt.tight_layout()
plt.show()
API
EyepadAlign(verbose=0)
Class to align/transform face images to facial landmarks, based on eye alignment.
-
A scaling factor is computed based on distance between the left and right eye, such that the transformed face image will have the same eye distance as a reference face image.
-
A transformation is performed based on the eyes' center point. to align the face based on the reference eye location.
-
Finally, the transformed image is padded with zeros to match the desired final image size.
Parameters
-
verbose
: int (default=0)Verbose level to display the progress bar and log messages. Setting
verbose=1
will print a progress bar upon callingfit_directory
.
Attributes
-
target_landmarks_
: target landmarks to transform new face images to.Depending on the chosen
fit
parameters, it can be either (1) assigned to pre-fit shapes, (2) computed from a single face image (3) computed as the mean of face landmarks from all face images in a file directory of face images. -
eye_distance_
: the distance between left and right eyesin the target landmarks.
-
target_height_
: the height of the transformed output image. -
target_width_
: the width of the transformed output image.
Returns
self
: object
Examples
For usage examples, please see https://rasbt.github.io/mlxtend/user_guide/image/eyepad_align/
Methods
fit_directory(target_img_dir, target_height, target_width, file_extension='.jpg', pre_check=True)
Calculates the average landmarks for all face images in a directory which will then be set as the target landmark set.
Arguments
-
target_img_dir
: strDirectory containing the images
-
target_height
: intExpected image height of the images in the directory
-
target_width
: intExpected image width of the images in the directory
file_extension str (default='.jpg'): File extension of the image files.
pre_check Bool (default=True): Checks that each image has the dimensions specificed via
target_height
andtarget_width
on the whole directory first to identify potential issues that are recommended to be fixed before proceeding. Raises a warning for each image if dimensions differ from the ones specified and expected.
Returns
self
: object
fit_image(target_image)
Derives facial landmarks from a target image.
Arguments
-
target_image
:uint8
numpy.array, shape=[width, height, channels]NumPy array representation of the image data.
Returns
self
: object
fit_values(target_landmarks, target_width, target_height)
Used for determining the eye location from pre-defined landmark arrays, eliminating the need for re-computing the average landmarks on a target image or image directory.
Arguments
-
target_landmarks
: np.array, shape=(height, width)NumPy array containing the locations of the facial landmarks as determined by
mlxtend.image.extract_face_landmarks
-
target_height
: intimage height
-
target_width
: intimage width
Returns
self
: object
transform(img)
transforms a single face image (img) to the target landmarks based on the location of the eyes by scaling, translation and cropping (if needed):
(1) Scaling the image so that the distance of the two eyes in the given image (img) matches the distance of the two eyes in the target landmarks.
(2) Translation is performed based on the middle point between the two eyes.
Arguments
-
img
: np.array, shape=(height, width, channels)Input image to be transformed.
Returns
self
: object