combined_ftest_5x2cv
combined_ftest_5x2cv(estimator1, estimator2, X, y, scoring=None, random_seed=None)
Implements the 5x2cv combined F test proposed by Alpaydin 1999, to compare the performance of two models.
Parameters
-
estimator1
: scikit-learn classifier or regressor -
estimator2
: scikit-learn classifier or regressor -
X
: {array-like, sparse matrix}, shape = [n_samples, n_features]Training vectors, where n_samples is the number of samples and n_features is the number of features.
-
y
: array-like, shape = [n_samples]Target values.
-
scoring
: str, callable, or None (default: None)If None (default), uses 'accuracy' for sklearn classifiers and 'r2' for sklearn regressors. If str, uses a sklearn scoring metric string identifier, for example {accuracy, f1, precision, recall, roc_auc} for classifiers, {'mean_absolute_error', 'mean_squared_error'/'neg_mean_squared_error', 'median_absolute_error', 'r2'} for regressors. If a callable object or function is provided, it has to be conform with sklearn's signature
scorer(estimator, X, y)
; see https://scikit-learn.org/stable/modules/generated/sklearn.metrics.make_scorer.html for more information. -
random_seed
: int or None (default: None)Random seed for creating the test/train splits.
Returns
-
f
: floatThe F-statistic
-
pvalue
: floatTwo-tailed p-value. If the chosen significance level is larger than the p-value, we reject the null hypothesis and accept that there are significant differences in the two compared models.
Examples
For usage examples, please see https://rasbt.github.io/mlxtend/user_guide/evaluate/combined_ftest_5x2cv/